Given a list of coins[] of different denominations with infinite supply of each of the coins. Find the minimum number of coins required to make the given sum. If it's not possible to make a change, return -1.
This algorithm uses memoization to improve performance. It's same as the recursive version of Find minimum coins to make change, but with a special 'cache' to store results. The 'cache key' is crucial. It's how we identify and store past results. Sometimes we need one key, sometimes multiple keys. We add code to:
cache = None
def count(coins, total):
if (total < 0 or len(coins) <= 0):
return float('inf')
if total == 0:
return 0
global cache
if not cache:
cache = [[None for _ in range(total + 1)] for _ in range(len(coins) + 1)]
if not cache[len(coins)][total]:
cache[len(coins)][total] = min(1 + count(coins, total - coins[0]), count(coins[1:], total))
return cache[len(coins)][total]
coins = [25, 10, 5]
total = 30
coins.sort(reverse=True)
output = count(coins, total)
print(output if (output != float('inf')) else -1)
let cache = null;
function count(coins, sum) {
if (sum < 0 || coins.length <= 0) {
return Infinity;
}
if (sum == 0) {
return 0;
}
if (cache === null) {
cache = [];
for (let i = 0; i < coins.length + 1; i++) {
cache[i] = [];
}
}
if (cache[coins.length][sum] === undefined) {
cache[coins.length][sum] = Math.min(1 + count(coins, sum - coins[0]), count(coins.slice(1), sum));
}
return cache[coins.length][sum];
}
const coins = [25, 10, 5];
const sum = 30;
coins.sort((a, b) => b - a);
const output = count(coins, sum);
console.log((output != Infinity) ? output : -1);