Given a list of coins[] of different denominations with infinite supply of each of the coins. Find the minimum number of coins required to make the given sum. If it's not possible to make a change, return -1.
Starting with the target sum: The algorithm explores two possible paths for each coin:
By iteratively exploring these two paths for every coin, the algorithm identifies the combination of coins that minimizes the total number required to reach the target sum.
def count(coins, total):
  if (total < 0 or len(coins) <= 0):
    return float('inf')
  if total == 0:
    return 0
  return min(1 + count(coins, total - coins[0]), count(coins[1:], total))
coins = [25, 10, 5]
total = 30
coins.sort(reverse=True)
output = count(coins, total)
print(output if (output != float('inf')) else -1)
function count(coins, sum) {
  if (sum < 0 || coins.length <= 0) {
    return Infinity;
  }
  if (sum == 0) {
    return 0;
  }
  return Math.min(1 + count(coins, sum - coins[0]), count(coins.slice(1), sum));
}
const coins = [25, 10, 5];
const sum = 30;
coins.sort((a, b) => b - a);
const output = count(coins, sum);
console.log((output !=  Infinity) ? output : -1);