Given an integer n, find the first n rows of Pascal's triangle.
This algorithm uses memoization to improve performance. It's same as the recursive version of Pascal's Triangle, but with a special 'cache' to store results. The 'cache key' is crucial. It's how we identify and store past results. Sometimes we need one key, sometimes multiple keys. We add code to:
cache = None
def binomial(n, k):
if n < 0 or n < k:
return 0
if k == 0 or k == n:
return 1
global cache
if not cache[n][k]:
cache[n][k] = binomial(n - 1, k - 1) + binomial(n - 1, k)
return cache[n][k]
n = 5
output = []
cache = [[None for _ in range(n + 1)] for _ in range(n + 1)]
for i in range(n):
result = []
for j in range(i + 1):
result.append(binomial(i, j))
output.append(result)
print(output)
function binomial(n, k) {
if (n < 0 || n < k) {
return 0;
}
if (k === 0 || k === n) {
return 1;
}
if (cache[n][k] == null) {
cache[n][k] = binomial(n - 1, k - 1) + binomial(n - 1, k);
}
return cache[n][k];
}
const n = 5;
const output = [];
const cache = Array.from(Array(n + 1), () => Array(n + 1).fill(null));
for(let i = 0; i < n; i++) {
let result = [];
for (let j = 0; j <= i; j++) {
result.push(binomial(i, j));
}
output.push(result);
}
console.log(output);