Given an array of size n, find the length of the longest increasing subsequence (LIS), in which the elements of the subsequence are sorted in increasing order.
This algorithm uses memoization to improve performance. It's same as the recursive version of Find longest increasing subsequence (LIS), but with a special 'cache' to store results. The 'cache key' is crucial. It's how we identify and store past results. Sometimes we need one key, sometimes multiple keys. We add code to:
cache = {} def count(ls): last = len(ls) - 1 if last == 0: return 1 global cache if last not in cache: mx = 1 for i in range(last): if ls[i] < ls[last]: mx = max(mx, 1 + count(ls[0:i + 1])) cache[last] = mx return cache[last] ls = [3, 10, 2, 1, 20] mx = 1 for i in range(len(ls)): mx = max(mx, count(ls[0:i + 1])) print(mx)
const cache = [] function count(list) { const last = list.length - 1; if (last == 0) { return 1; } if (cache[last] === undefined) { let max = 1; for (let i = 0; i < last; i++) { if (list[i] < list[last]) { max = Math.max(max, 1 + count(list.slice(0, i + 1))); } } cache[last] = max; } return cache[last]; } const list = [3, 10, 2, 1, 20]; let max = 1; for (let i = 0; i < list.length; i++) { max = Math.max(max, count(list.slice(0, i + 1))); } console.log(max);