A binomial coefficient, n choose k formula, is also known as combinations formula, and is defined as
This algorithm uses memoization to improve performance. It's same as the recursive version of Binomial coefficient, but with a special 'cache' to store results. The 'cache key' is crucial. It's how we identify and store past results. Sometimes we need one key, sometimes multiple keys. We add code to:
cache = None
def binomial(n, k):
if n < 0 or n < k:
return 0
if k == 0 or k == n:
return 1
global cache
if not cache:
cache = [[None for _ in range(k + 1)] for _ in range(n + 1)]
if not cache[n][k]:
cache[n][k] = (float(n) / k) * binomial(n - 1, k - 1)
return cache[n][k]
n = 10
k = 5
print(binomial(n, k))
let cache = null;
function binomial(n, k) {
if (n < 0 || n < k) {
return 0;
}
if (k === 0 || k === n) {
return 1;
}
if (cache == null) {
cache = [];
for (let i = 0; i < n + 1; i++) {
cache[i] = [];
}
}
if (cache[n][k] === undefined) {
cache[n][k] = (n / k) * binomial(n - 1, k - 1);
}
return cache[n][k]
}
const n = 10;
const k = 5;
console.log(binomial(n, k));